
New Resources and Ideas for Semantic Parsing

Kyle Richardson

Institute for Natural Language Processing (IMS)

School of Computer Science, Electrical Engineering and Information Technology
University of Stuttgart

June 7, 2018

Collaborators: Jonas Kuhn (advisor, Stuttgart) and Jonathan Berant (work on
”polyglot semantic parsing”, Tel Aviv), last updated 15.10.2018



Main Topic: Semantic Parsing

I Task: mapping text to formal (machine-readable) structured meaning
representations:

Text: Find me flights from Boston to New York.
→

Logical Form (LF): λx .flight(x) ∧ depart(x , bos) ∧ arrive(x , ny)

”Machines and programs which attempt to answer English
question have existed for only about five years.... Only in
recent years have attempts been made to translate me-
chanically from English into logical formalisms [or LFs]...”

R.F. Simmons. 1965, Answering English Question by Computer: A Survey.
Communications of the ACM
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Classical Natural Language Understanding (NLU)

I Conventional pipeline model: focus on capturing deep inference and
entailment (ex. Lunar QA system (Woods, 1973)).

input sem
List samples that contain
every major element

database
JsemK ={S10019,S10059,...}

1. Semantic Parsing

3. Reasoning

(FOR EVERY X /
MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation
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Why and How? Analogy with Compiler Design

NL text

Syntax

Logic/Semantics

Model

Programs

Translation

Interpretation

pos := i + rate * 60

Syntax :=

+

*

60id3

id2

id1

Semantics :=

+

*

int2real

60

id3

id2

id1

Code

MOVF id2, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1,id1

Programs

lex: id1 := id2 + id3 * 60

Translation

Generation

I NLU model is a kind of compiler, involves a transduction from NL to a
formal (usually logical) language.
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Data-driven NLU and Semantic Parsing

input sem
List samples that contain
every major element

database
JsemK ={S10019,S10059,...}

1. Semantic Parsing

3. Reasoning

machine learning
(FOR EVERY X /

MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation

I Data-driven NLU: Asks an empirical question: Can we learn NLU
models from examples?

I Semantic Parser Induction: Learn semantic parser (i.e., translation
to LFs) automatically from example parallel data.
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Data-driven Semantic Parsing in a Nutshell
challenge 1: Getting data?

Training
challenge 2:
Missing data?

challenge 3:
Deficient LFs?

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

Testing

input Semantic Parsing sem

x decoding
(Finding the best z)

z

world

reasoning

model

Evaluation: Correct Sem?
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Thesis Contributions and Talk Outline

challenge 1: Getting data?

Use source code as resource for building (synthetic) parallel corpora
for semantic parsing; introduce 45 new multilingual datasets and models.

Richardson and Kuhn 2017b. ACL
Richardson and Kuhn 2017a. EMNLP

challenge 2: Missing data?

Train semantic parsers on multiple datasets and domains (polyglot
modeling), develop a new graph-based decoding framework.

Richardson, Berant and Kuhn 2018. NAACL

challenge 3: Deficient LFs?

Train semantic parsers using entailment information; introduce new
learning framework: learning from entailment.

Richardson and Kuhn 2016. TACL
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<Challenge 1>

challenge 1: Getting data?

Training

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

Testing

...

model
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Semantic Parsing and Parallel Data

input x What state has the largest population?

sem z (argmax (λx . (state x) λx . (population x)))

I Learning from LFs: Assumes pairs of text x and full logical forms z, goal
is to learn sem : x→ z, evaluate accuracy of translation.

I GeoQuery (Zelle and Mooney, 1996): Benchmark dataset, available in
four languages, LFs hand annotated by domain experts.

I Underlying Challenge: Getting pairs of text and full LFs without
expensive annotation effort.
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Source Code and API Documentation

* Returns the greater of two long values
*
* @param a an argument
* @param b another argument
* @return the larger of a and b
* @see java.lang.Long#MAX VALUE
*/
public static Long max(long a, long b)

I Source Code Documentation: High-level descriptions of internal
software functionality paired with code.

I Idea: Treat as a parallel corpus (Allamanis et al., 2015), or synthetic
semantic parsing dataset.
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Source Code as a Parallel Corpus
I Tight coupling between high-level text and code, easy to extract

text/code pairs automatically (no annotation).

* Returns the greater of two long values
*
* @param a an argument
* @param b another argument
* @return the larger of a and b
* @see java.lang.Long#MAX VALUE
*/
public static Long max(long a, long b)w� extraction

text Returns the greater...
code lang.Math long max( long... )

(ns ... clojure.core)

(defn random-sample
"Returns items from coll with random
probability of prob (0.0 - 1.0)"
([prob] ...)
([prob coll] ...))w� extraction

text Returns items from coll...
code (core.random-sample prob...)

I Function signatures: Header-like representations, have similar
predicate-argument structure to atomic predicate logic.

Signature ::= lang︸︷︷︸
namespace

Math︸︷︷︸
class

long︸︷︷︸
return

max︸︷︷︸
name

(
long a, long b︸ ︷︷ ︸
named/typed arguments

)
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New Resources: Stdlib and Py27 Datasets

Dataset #Pairs #Symbols #Words Vocab. Example Pairs (x, z)

Java 7,183 4,072 82,696 3,721 x : Compares this Calendar to the specified Object.
z : boolean util.Calendar.equals(Object obj)

Ruby 6,885 3,803 67,274 5,131 x : Computes the arc tangent given y and x.
z : Math.atan2(y,x) → Float

PHPen 6,611 8,308 68,921 4,874 x : Delete an entry in the archive using its name.
z : bool ZipArchive::deleteName(string $name)

Python 3,085 3,991 27,012 2,768 x : Remove the specific filter from this handler.
z : logging.Filterer.removeFilter(filter)

Elisp 2,089 1,883 30,248 2,644 x : Returns the total height of the window.
z : (window-total-height window round)

Geoquery 880 167 6,663 279 x : What is the tallest mountain in America?
z : (highest(mountain(loc 2(countryid usa))))

I Stdlib: Datasets 18 standard libraries, 10 programming languages, 7
natural languages.

I Py27: 27 open-source Python projects from GitHub.
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New Task: Text to Signature Translation

text Returns the greater of two long values
signature lang.Math long max( long a, long b )

I Task: Given text/signatures training pairs, learn a semantic parser:
text→ signature, predicting within finite signature/translation space.

Gets the total cache size

× string APCIterator::key(void)
× int APCIterator::getTotalHits(void)
× int APCterator::getSize(void)
int APCIterator::getTotalSize(void)
× int Memcached::append(string $key)
...

Semantic Parser

signature translations
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Text to Signature Translation: How hard is it?

I A First Model: Use statistical (word-based) machine translation (SMT)
(Deng and Chrupa la, 2014) and reranking.

Gets the total cache size

× string APCIterator::key(void)
× int APCIterator::getTotalHits(void)
× int APCterator::getSize(void)
int APCIterator::getTotalSize(void)
× int Memcached::append(string $key)
...

int APCIterator::getTotalSize(void)
× int APCterator::getSize(void)
× string APCIterator::key(void)
× int Memcached::append(string $key)
× int APCIterator::getTotalHits(void)
...

SMT Model

Constrained Decoder

Discriminative Model

reranked k-best

k-best signature translation list

I Decoding: finding the best output given input, unconstrained versus
constrained (assign probability to wellformed output only).
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Text to Signature Translation: How Hard Is It?

I How does such a simple approach fare on benchmark tasks and our task?

text Returns a string representing the given day-of-week
Moses (unconstr.) (second day-of-week ignore string)
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Text to Signature Translation: How Hard Is It?

I How does such a simple approach fare on benchmark tasks and our task?

text Returns a string representing the given day-of-week
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I Result: achieving high accuracy is not easy, not a trivial problem.
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Text to Signature Translation: How Hard Is It?

text Returns the index of the first occurrrence of char in the string
Moses (start end occurrence lambda char string string string)

I Observation: Semantic Parsing is not an unconstrained translation
problem, constraining the search is very important.
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I Introduced 45 new datasets and novel text-to-signature task.

I This work is of interest to semantic parsing:

I Reveals the limitations of existing techniques in sparse settings,
better benchmark (realistic vocabulary/domain size).

I Requires asking fundamental questions about how decoding and
search work.

17



<Challenge 2>

Training Missing data?

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

Testing

Semantic Parsing

decoding

model
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Challenge 2: Insufficient and Missing Data

(en,PHP)
(en,Lisp)
(es, PHP)

(ja, Python)
(en, Haskell)

...

θen → Java

θen → Lisp

θes → PHP

θja → Python

θen → Haskell

?θes → Java?

I Traditional approaches to semantic parsing train individual models for
each available parallel dataset.

I Underlying Challenge: Datasets tend to be small, hard and unlikely to
get certain types of parallel data, e.g., (es,Java).
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Polyglot Models: Training on Multiple Datasets
(en,Java)
(en,Lisp)
(es, PHP)

(ja, Python)
(en, Haskell)

...

θpolyglot

I Idea: concatenate all datasets, build a single-model with shared
parameters, capture redundancy (Herzig and Berant, 2017).

I Polyglot Translator: translates from any input language to any output
(programming) language.

1. Multiple Datasets: Does this help learn better semantic parsers?

2. Zero-Short Translation (Johnson et al., 2016): Can we translate
between unobserved language pairs?
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Graph-Based Constrained Decoding

0.00

s0

∞5

s5

∞1

s1

∞6

s6

∞2

s2

∞3

s3

∞7

s7

∞4

s4

∞9

s9

∞10

s10

∞11

s11

∞8

s82C

2Clojure

numeric

algo

math

math
ceil

atan2

atan2

ceil

x

x
arg

y

I Idea: Represent full translation search space as directed graph, add
artifical language tokens.

I Decoding/Search (test time): Find a path given an input x:

x : The ceiling of a number

Formulate as weighted shortest-path search (use translation models as
dynamic weight functions), defines a general decoding framework.
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Shortest Path Decoding in a Nutshell

I Standard SSSP: Traverse labeled edges E (label z) in order (e.g., sorted
or best-first order), and solve for each node v the following recurrence:

d [v ]︸︷︷︸
↑

node score

= min
(u,v ,z)∈E

{
d [u]︸︷︷︸
↑

incoming node score

+ w(u, v , z)︸ ︷︷ ︸
↑

edge score

}

I Use trained translation model to dynamically weight edges, general
framework for directly comparing models (Richardson et al., 2018).

I constrained decoding: ensure that output is well-formed, related
efforts: Krishnamurthy et al. (2017); Yin and Neubig (2017).
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DAG Decoding for Neural Semantic Parsing (Example)

I Seq2Seq: popular in semantic parsing (Dong and Lapata, 2016), variants
of (Bahdanau et al., 2014), direct decoder model (unconstrained):

p(z | x) = ConditionalRNNLM(z)

=
|z|∏
i

pΘ(zi | z<i , x)

I DAGs G = (V ,E), numerically sorted nodes (acyclic), trained decoder.

0: d[b]← 0.0
1: for vertex u ∈ V in topologically sorted order
2: do d(v) = min

(u,v,z)∈E

{
d(u) + w(u, v , z)

}
3: s[v ]← RNN state for min edgeandzj
4: return min

v∈V

{
d(v)

}
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Shortest Path Decoding: Comparing Models
I Shortest Path Decoding Framework: Directly compare the performance

of different semantic parsing models under a single search procedure.

I Neural Seq2Seq: popular in semantic parsing (Dong and Lapata, 2016;
Jia and Liang, 2016).
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Training on Multiple Datasets: Does this help?
I Polyglot Models: Directly compare if training on multiple datasets

improves translation.

I Benchmark Datasets: Training polyglot models on multiple datasets can
increase performance, makes learning more robust
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I Code Datasets: Training polyglot models on multiple datasets can
increase performance, depending on the model.
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Advantages: Any/Mixed Language Decoding

I Any Language Decoding: translating between multiple APIs, letting the
decoder decide output language, zero-shot translation.

1. Source API (stdlib): (es, PHP) Input: Devuelve el mensaje asociado al objeto lanzado.

O
ut

pu
t Language: PHP Translation: public string Throwable::getMessage ( void )

Language: Java Translation: public String lang.getMessage( void )
Language: Clojure Translation: (tools.logging.fatal throwable message & more)

2. Source API (stdlib): (ru, PHP) Input: konvertiruet stroku iz formata UTF-32 v format UTF-16.

O
ut

pu
t Language: PHP Translation: string PDF utf32 to utf16 ( ... )

Language: Ruby Translation: String#toutf16 => string
Language: Haskell Translation: Encoding.encodeUtf16LE :: Text -> ByteString

3. Source API (py): (en, stats) Input: Compute the Moore-Penrose pseudo-inverse of a matrix.

O
ut

pu
t Project: sympy Translation: matrices.matrix.base.pinv solve( B, ... )

Project: sklearn Translation: utils.pinvh( a, cond=None,rcond=None,... )
Project: stats Translation: tools.pinv2( a,cond=None,rcond=None )
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Advantages: Any/Mixed Language Decoding

I Mixed Language Decoding: translating from input with NPs from
multiple languages, introduced a new mixed GeoQuery test set.

Mixed Lang. Input: Wie hoch liegt der höchstgelegene punkt in Αλαμπάμα?
LF: answer(elevation 1(highest(place(loc 2(stateid(’alabama’))))))
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I Polyglot modeling: training on multiple datasets, helps to make models
more robust and learn across domains.

I Developed a graph-based constrained decoding framework:

I Supports polyglot and mixed language decoding.

I Allows for directly comparing models using a single search protocol.
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<Challenge 3>

Training Deficient LFs?

Parallel Training Set
D =

{
(xi , zi )

}|D|
i

Machine Learner

Testing

input Semantic Parsing sem

z

world
reasoning

model

Complex Evaluation?
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Semantic Parsing and Entailment

I Entailment: One of the basic aims of semantics (Montague, 1970)1.

input sem

t. All samples that contain
a major element

→
h. Some sample that contains
a major element

database
JsemK ={S10019,S10059,...} ⊇ {S10019}

Semantic Parsing

Reasoning

(FOR EVERY X /
MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

Knowledge Representation

1Recognizing Textual Entailment (RTE): would a person reading t usually infer h?
(Dagan et al., 2005), answers: { Entail (yes), Contradict (no), Unknown (possible) }
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Semantic Parsing and Entailment

I Question: What happens if we unit test our semantic parsers using an
RTE test?

I Sportscaster: ≈1,800 soccer descriptions paired with logical forms (LFs)
(Chen and Mooney, 2008).

sentence LF
t Pink 3 passes to Pink 7 pass(pink3,pink7)
h Pink 3 quickly kicks to Pink 7 pass(pink3,pink7)
inference (human) t→ h Unknown (RTE)
inference (LF match) t→ h Entail (RTE)
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Semantic Parsing and Entailment

I Question: What happens if we unit test our semantic parsers using an
RTE test?

I Sportscaster: ≈1,800 soccer descriptions paired with logical forms (LFs)
(Chen and Mooney, 2008).

sentence LF
t The pink goalie passes to pink 7 pass(pink1,pink7)
h Pink 1 kicks the ball kick(pink1)
inference (human) t→ h Entail (RTE)
inference (LF match) t→ h Contradict (RTE)
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Semantic Parsing and Entailment

I Question: What happens if we unit test our semantic parsers using an
RTE test?

I Sportscaster: ≈1,800 soccer descriptions paired with logical forms (LFs)
(Chen and Mooney, 2008).

Inference Model Accuracy
Majority Baseline 33.1%
RTE Classifier 52.4%
LF Matching 59.6%

I Challenge 3: Model cannot solve RTE, can we teach our model to
reason logically about entailment?
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Learning from Entailment: Illustration

I Add pairs of sentences with entailment judgements to training, jointly
train model to reason logically about entailment and soccer.

input: (t,h) t pink3 λ passes to pink1

a

h pink3 quickly kicks λ

y

Correct Logical Reasoning

X passes to pink 1 ⇒ kicks
× passes to pink1 ? quickly kicks
× pink 3 passes to pink1 ? pink3 quickly kicks

? = Uncertain

EI z Uncertain

world
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Learning from Entailment: Illustration

I Add pairs of sentences with entailment judgements to training, jointly
train model to reason logically about entailment and soccer.

input: (t,h) t pink3 λ passes to pink1

a

h pink3 quickly kicks λ

y

Incorrect Reasoning

X passes to pink 1 ⇒ kicks
X passes to pink1 ⇒ quickly kicks
X pink 3 passes to pink1 ⇒ pink3 quickly kicks

⇒ = Entail

EI z Uncertain

world
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Grammar Approach: Sentences to Logical Form

I Translation rules as probabilistic grammar rewrites, constructed from
target representations using templates (Börschinger et al. (2011))

(x : purple 10 quickly kicks, z : {kick(purple10), block(purple7),...})

↓ (rule extraction)

Rep

in transitive

kickc

kickw

kicks

λc

quickly

arg1

purple10c

purple10w

purple 10

Rep

arg1×

purple10c

purple10w

kicks

λc

quickly

in transitive×

kickc

kickw

purple 10

Rep

in transitive

blockc

blockw

kicks

λc

quickly

arg1

purple7c

purple7w

purple 10

Rep

in transitive

blockc

blockw

kicks

blockw

quickly

arg1

purple7c

purple7w

purple 10

kick(purple10) kick(purple10) block(purple7) block(purple9)
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λc

quickly

arg1
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purple 10

Rep

in transitive

blockc

blockw

kicks

blockw

quickly

arg1

purple9c

purple9w

purple 10

kick(purple10) kick(purple10) block(purple7) block(purple9)
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Grammar Approach: Sentences to Logical Form

I Translation rules as probabilistic grammar rewrites, constructed from
target representations using templates (Börschinger et al. (2011))

(x : purple 10 quickly kicks, z : {kick(purple10), block(purple7),...})

↓ (rule extraction)

X X × ×
Rep

in transitive

kickc

kickw

kicks

λc

quickly

arg1

purple10c

purple10w

purple 10

Rep

arg1×

purple10c

purple10w

kicks

λc

quickly

in transitive×

kickc

kickw

purple 10

Rep

in transitive

blockc

blockw

kicks

λc

quickly

arg1

purple7c

purple7w

purple 10

Rep

in transitive

blockc

blockw

kicks

blockw

quickly

arg1

purple9c

purple9w

purple 10

kick(purple10) kick(purple10) block(purple7) block(purple9)
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Modeling Entailments as Structured Proofs

I Define a novel probabilistic language and logic based on the natural logic
calculus (MacCartney and Manning, 2009).

I Rules decompose to probabilistic rewrites, allows for joint training with
ordinary semantic parser using single generative model.((

t: pink 1 kicks,h: pink 1 quickly passes to pink 2
)

,z: Uncertain
)

↓ (inference rules)

X X ×
w

w

w

λ/pink2

λ/ pink2

w

w

kick/pass

kicks / passes to

wc

λ/ v

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

w

w

w

λ/pink2

λ/ pink2

w

w

kick/pass

kicks / passes to

≡c

λ/ ≡

λ / quickly

≡

pink1/pink1

pink 1 / pink 1

|

|

w

λ/pink2

λ/ pink2

|

|

kick/pass

kicks / passes to

≡c

λ/ ≡

λ / quickly

≡

pink1/pink1

pink 1 / pink 1
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Joint Entailment Modeling and Reasoning

I Weakly-supervised semantic parsing (Liang et al., 2013; Berant et al.,
2013), treat as partially-observed random process (Guu et al., 2017).

x = (t, h), z ∈ {Entail, Contradict, Unknown}

p(z | x) =
∑

y∈Yx︸︷︷︸
proofs

p(z | y)︸ ︷︷ ︸
↑

valid inference?

× pθ(y | x)︸ ︷︷ ︸
↑

proof score

I p(z | y) : 1 if proof derives correct entailment, 0 otherwise

I pθ(y | x): Model proof structures and rules as PCFG, use variant of
natural logic calculus (MacCartney and Manning, 2009).

I Results in an interesting probabilistic logic, efficient proof
search via reduction to (P)CFG search.
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Improved Semantic Parsing and RTE Testing

I New Evaluation: Can my semantic parser solve RTE tasks? New
Sportscaster inference corpus, ≈460 RTE pairs.

sentence analysis
t Pink 3 passes to Pink 7 pass(pink3,pink7)
h Pink 3 quickly kicks to Pink 7 pass(pink3,pink7)
inference (human) t→ h Unknown (RTE)
inference (LF match) t→ h Entail (RTE)

Inference Model Accuracy
Majority Baseline 33.1%
LF Matching 59.6%
Logical Inference Model 73.4%
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I Jointly training semantic parsers to reason about entailment.

I Created a novel semantic parsing model that supports joint probabilistic
symbolic reasoning:

I We achieve state-of-the-art performance on the original semantic
parsing task.

I Allows for evaluating semantic parsers on entailment tasks, perform
domain-specific reasoning.
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<Conclusions>
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Introduced several new algorithmic/learning techniques, tasks and
resources for helping making semantic parsing easier.

I 45 new multilingual datasets in the software domain, and a novel
text-to-signature task and set of models.

I A new graph decoding framework, which allows for polyglot
modeling, new mixed language dataset and task, improve results on
code datasets.

I A new learning framework and dataset for entailment modeling and
semantic parsing, state-of-the-art results on original task.
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Thank You
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