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Asking Questions about Equations In this article, we consider the problem of solving certain

types of equations (called polynomial equations). For example, imagine you are given the equation

4− x2 = 0

and asked to do the following: determine if there exists a solution for the variable x in integers.

Since it is easy to come up with a single solution in this case, namely x = 2, we can use this specific

solution to answer this question in the affirmative. In contrast, it should be clear that a slightly

modified equation such as 2 − x2 = 0 does not have a solution, which can easily be checked by

hand.

Of course, not all equations of this form are as straightforward to solve. If we allow for a

few additional variables and slightly larger constants, we quickly stumble upon innocent looking

equations such as the following1:

(x3 + y3 + z3) = 114,

whose solution (if it exists) continues to elude the many number theorists who are actively working

on this and other related equations involving sums of three cubes of the form x3 + y3 + z3 = a. As

before, it suffices to find a single solution for variables x, y, z, however searching the infinite space

of integers, especially in the absence of a broader mathematical theory, can easily lead one astray2.

We can also ask seemingly more complicated follow-up questions, such as whether the specific

equation below (known as the Ljundgrenn equation):

x2 − 2y4 + 1 = 0 (1)

1This example is taken from Poonen (2008). Other examples and explanations are adapted throughout from the

following very readable surveys: Smith (2011); Pasten (2019)
2Considerable empirical progress was made in 2019 on sum of three cubes problems when solutions for a = 33 and

a = 42 were discovered by Andrew Booker and colleagues (see Booker (2019)). In the former case, his investigation

involved looking at positive and negative integers in the range of 1016, which required the equivalent of 23 years of

continuous computation on a single computer; this resulted in the following highly unintuitive variable solutions: (x =

886612897528752, y = −877840544286223, z = −273611146880704). In the latter case, finding a solution required

(the equivalent of) 1.3 million hours of compute time, which is likewise an unfathomable amount of computation

time.
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not only has a solution, but a fixed set of unique solutions (the Norwegian mathematician Wilhelm

Ljundgreen, after whom the equation is named, proved in 1942 that this equation indeed only has

the following two solutions: (x = 1, y = 1) and (x = 239, y = 13)). We can also ask whether no

solutions exist for a given equation under certain conditions, for example whether it is true that

the following equation (or family of equations):

xn + yn = zn, (2)

has no integer solutions for any n > 2, as was first conjectured by Pierre Fermat in the 17th century

and proved by Andrew Wiles in 19943. Answering questions of this type, which are commonly found

in number theory proper, often require considerable amounts of mathematical sophistication and

ingenuity.

Rather than focusing on solving specific equations and coming up with specialized solutions,

as number theorists tend to do, the main focus of this article will be on a larger and much more

grandiose question, namely: does there exist a universal solution for solving arbitrary (polynomial)

equations? In other words, can we automate the process of equation solving and devise a universal

algorithm that can determine, given any polynomial equation regardless of its number of variables

or its difficulty, whether it has a solution?

The Search for a Universal Equation Solver A version of this last question was asked by

the German mathematician David Hilbert in 1900, and is problem number 10 of 23 in the famous

Hilbert Problems (we examine the exact phrasing of his question in the next section). In the

words of Martin Davis, such problems were among the premier mathematical problems that the

nineteenth century [had] left for the twentieth century to solve. Given the long history of work on

polynomial equation solving, dating back to Diophantus in the 3rd century AD and even before,

the idea of a universal algorithm is not only grandiose but, as Davis once wrote, utopian.

The 20th century did solve this problem, though the solution likely would have baffled and

annoyed David Hilbert, who had dreamed of reducing all of higher mathematics to a definitive set

of formal axioms and algorithmic principles. In 1970, the Russian mathematician Yuri Matiyase-

vich, building on the work of a rather eclectic and tenacious group of American researchers that

includes Martin Davis, Julia Robinson and Hilary Putnam, provided the final piece in the proof

that ultimately lead to the following negative solution: no such universal method or algorithm

exists for solving arbitrary polynomial equations (or more specifically, what are called diophan-

tine equations). A large part of the final proof involves a rather astonishing and unexpected link

between number theory and basic concepts from computer science and computability theory.

While this result closely relates to other impossibility results discovered in the early days of

computer science by Kurt Gödel, Alonzo Church, Alan Turing, Emil Post4 and others, it is not

at all obvious at first sight that Hilbert’s 10th problem is a problem that computer science would

3The story behind this conjecture is likely to be the most repeated anecdote in mathematics. Fermat had ap-

parently scribbled this conjecture in 1637 into the margins of Diophantus’ Arithmetica and claimed that he had

discovered a truly remarkable proof that was too complex to fit in the margins. As mentioned above, the ultimate

proof didn’t arrive until over 350 years later.
4Emil Post famously had the following to say about Hilbert’s 10th problem nearly 25 years before its final reso-

lution: it ‘begs for an unsolvability proof’.
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have much to say about. One might have thought that any algorithmic solution to the general

problem of solving (polynomial) equations would rely solely on principles from number theory and

arithmetic. This turns out not to be the case and one of the big technical ideas to come out of this

work is that one can link notions from computer science about computable or recursive sets with

sets of solutions to equations.

To see how this works, consider the general form of the three cube problem shown below (which

we might think of as denoting the family of all the three cube equations):

x3 + y3 + z3 = a. (3)

Solutions to this equation (i.e., particular values a for which there exist solutions for the variables)

can then be represented as sets of the following form:

S =
{
a | x3 + y3 + z3 = a holds for some integers x, y, z

}
,

Asking whether Equation 3 has solutions for a particular a (e.g., 114) in this setting then reduces

to asking whether a is in the set S (e.g., 114 ∈ S?). Similarly, asking whether there are a unique

set of solutions, or whether no solutions exist, involves asking questions about the size and scope

of S (is S the empty set? is S of size k?,...). When formulated in this way, the problem quickly

starts to look like the types of problems encountered in theoretical computer science.

At its heart, Hilbert’s 10th problem is what we now call a decision problem; what we want

to prove is that there exists an algorithm that can decide (i.e., return a yes/no answer) whether

a given equation has a solution or not, or equivalently whether a number is included in a set of

solutions. Based on the work of Alonzo Church and Alan Turing, who were among the first to

study modern decision problems, we know that some problems can be undecidable; that is, it can

be proven that no such algorithm can exist no matter how hard one tries. This is what happens in

the case of Hilbert’s 10th problem: it is possible to define hypothetical sets of solutions for which

it is provably impossible to build an algorithm that can decide set-membership. As a consequence,

this undecidability proves that a general algorithm cannot exist (the surprising part is that we can

talk about such sets without having to say very much about their corresponding equations, and in

a way that entirely side-steps the practical issues involved with explicitly finding its members).

Using the language of computability theory, we can specifically say the following: any positive

solution to Hilbert’s 10th problem (i.e., proof that a universal algorithm exists for solving arbitrary

diophantine equations) would imply a positive solution to the Halting Problem of Turing (1936),

which is the most well-known undecidable problem in computer science. The goal of this article is

explain what this means and to provide enough of the technical computer science background that

is needed to sketch out this fascinating result.5

Diophantine Equations and Sets

First, let’s consider Hilbert’s original description of the problem:

5We will only give a cursory overview of the number theoretic aspects of this problem that helped Matiyasevich

and others to arrive at the final solution. The full details of this can be found in the surveys Davis (1973) and Jones

and Matijasevič (1991), as well as Matiyasevich (1993).
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Given a Diophantine equation with any number of unknown quantities and with ratio-

nal integral numerical coefficients: To devise a process according to which it can be

determined in a finite number of operations whether the equation is solvable in rational

integers.

We will consider each part of this problem statement in turn. Hilbert’s notion of a process ..[in-

volving] a finite number of operations is what we would now call an algorithm, which was a rather

fuzzy concept in 1900 (we will talk about algorithms in the next section). By diophantine equa-

tion, Hilbert’s is referring to certain types of polynomial equations that characterize most of the

equations we have considered so far. A polynomial in our case will mean the following:

Definition 1. A polynomial expression over n variables/unknown quantities x1, x2, .., xn, denoted

as p(x1, ..., xn), is any finite sum of monomials, or expressions of the form:

cxk11 , ..., xknn ,

where c is an integer coefficient (i.e., positive and negative integers and zero, denoted as Z) and

k1, ..., kn are natural numbers including zero (denoted as N) that are, importantly, distinct from

the polynomial’s variables.

Examples of polynomial expressions include x2
1 − 4x1 + 3 (where, for convenience, subtraction

is used in place of addition with a negative number, + − 4x), 4x3
1 + 6x2, x1 + x2 + ... + x4 (with

all coefficients c equal to 1) and so on.6 When talking about polynomials it is important to specify

the range of their variables. Diophantine equations are special types of polynomial equations that

restrict the range of variables in the manner specified below.

Definition 2. A diophantine equation is specific type of polynomial expression p(x1, ..., xn) = 0

(also known as a polynomial equation in traditional form) restricted to integer unknowns x1, ..., xn
(or what Hilbert calls rational integers).

We will show momentarily that it suffices to modify the problem such that variables are restricted

to natural numbers, which is a inconsequential variant of Hilbert’s original description. We also

note that it is sometimes easier to transform diophantine equations out of their traditional form

p(·) = 0 into equations of the following type:

pl(x1, ..., xn) = pr(x1, ..., xn) (4)

where pl and pr are two separate diophantine equations defined over the same variables. For

example, transformations of this type become convenient when we want to remove negative terms

in an equation, which we might do with the following non-trivial diophantine equation:

4x3y − 2x3z3 − 3y2x + 5z = 0,

to arrive at:

4x3y + 5z = 2x2z3 + 3y2x

by transposing the negative terms.

6When trying to map specific polynomials into a sum of monomials in the form provided, it is important to recall

that each kj exponent can be 0, which maps any number to 1. Therefore, in p(x1, x2) = 4x3
1 + 6x2, the first term 4x3

1

in the sum (whose coefficient is 4) is equal to 4x3
1x

0
2, whereas the second term is equal to 6x0

1x
1
2. Likewise, for any

term without an explicit coefficient, it can be assumed that the coefficient is 1.
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As briefly discussed in the last section, one of the big ideas is to define diophantine equations

with additional variables called parameters a, as in p(a, x1, x2, ..., xn) (where x1, ..., xn continue to

be what we previously called unknowns), which allow us to describe abstract families of diophantine

equations. This gives rise to an important concept called a diophantine set.

Definition 3. A diophantine representation of a diophantine equation p with integer unknowns

x1, ..., xn and a parameter a7 is the set (which we will henceforth call a diophantine set):

S =
{
a | ∃x1, ..., xn[p(a, x1, ..., xn) = 0]

}
(5)

We will also say that a given set of numbers {a1, a2, ...} is diophantine if and only if it has a

diophantine representation.

Interestingly, this set construction will allow us to talk about number theoretic concepts without

having to say very much about specific equations. That is, unlike in ordinary number theory where

one usually starts with a specific equation or family of equations and attempts to arrive at a set of

solutions and parameters, the idea here is that we will start with a set and try to arrive at a family

of equations to demonstrate that the set is diophantine.

Examples Let’s illustrate this idea by starting with the set of natural numbers N. Is this set

diophantine? The answer is yes, which can be demonstrated by exploiting the following important

theorem:

Theorem 1. Four-square theorem (Lagrange 1770) Any natural number a can be expressed a sum

of four integer squares:

a = x2
0 + x2

1 + x2
2 + x2

3 (6)

Using this equation, we therefore have our polynomial equation that defines exactly the natural

numbers. To make it have the desired diophantine form, we can simply move a to the other side of

the equation to arrive at a− (x2
0 + x2

1 + x2
2 + x2

3) = 0. Now to ask if a given number such as 4 is in

the set of natural numbers, we can also also ask whether 4− x2
0 + x2

1 + x2
2 + x2

3 = 0 has a solution.

What about the set of composite numbers (i.e., non-prime positive integers): {4, 6, 8, 9, 10, 12, ...}?
Here we have a slightly less intuitive equation:

(x1 + 2)(x2 + 2)− a = 0,

which again gives us what we need to say that composite numbers are diophantine. How about the

set of composite numbers that are odd? Well, we already have an equation for composite numbers,

and we can express odd numbers with the following equation:

2x1 + 1− a = 0

7We note that it is also possible to consider equations with tuples of parameters, (a1, .., am), however our simplified

version will suffice to prove the main result.
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Defining this set can then be accomplished by combing both equations and squaring each individual

equation (i.e., to ensure that they evaluate to 0):

(2x1 + 1− a)2 + ((x2 + 2)(x3 + 2)− a)2 = 0

In general, rather than talking about individual equations or family of equations, we can even

discuss systems of equations by combing multiple diophantine equations (or decomposing complex

equations into simpler ones) in the manner illustrated above.

Solutions in natural numbers The four-square theorem introduced above can be used to make

a few important points about diophantine equations as detailed in (Matiyasevich, 1993, Chapter1).

First, if you imagine that we have the following diophantine equation:

p(x1, .., xn) = 0, (7)

with solutions in arbitrary integers Z, then clearly this solution includes solutions in natural num-

bers since N ⊂ Z. On the other hand, if this equation has a solution in natural numbers, then

this solution also includes a solution in arbitrary integers since we can use the four square theorem

(Equation 6) to rewrite each xj in the equation as:

x1 = y2
1,1 + y2

1,2 + y2
1,3 + y2

1,4

x2 = y2
2,1 + y2

2,2 + y2
2,3 + y2

2,4

...

xn = y2
n,1 + y2

n,2 + y2
n,3 + y2

n,4

resulting in:

p((y2
0,1 + y2

0,2 + y2
0,3 + y2

0,4), ..., (y2
n,1 + y2

n,2 + y2
n,3 + y2

n,4)) = 0,

where each yj ∈ Z. The important point is the following: To establish the unsolvability of Hilbert’s

10th problem in its original form, it is sufficient to establish the unsolvability of its analog for

non-negative solutions (Matiyasevich, 1993). For this reason, we limit ourselves exclusively to

variables in natural numbers. Thus, the problem of solving Hilbert’s problem will crucially rely on

understanding properties of set of natural numbers and algorithms over sets, which we turn to in

the next section.

Computability Theory

In this section, we detail the basic ideas from computability theory that inform us about sets

and their algorithmic properties. This centers around a discussion of recursively enumerable and

recursive sets and, most importantly, understanding the differences between both classes of sets.

Definition 4. A recursively enumerable (or listable,computable,semi-decidable) set is any subset

A ⊆ N for which there exists an algorithm/Turing Machine/program that can print, with possible

repeats, all the members of A and nothing more8.

8Note that we can make this definition more complex both by considering subsets of Nm (i.e., sets of m−tuples

over N), or sets over Z, however our restricted definition will suffice for proving our main results.

6



We will not delve into what exactly an algorithm means in this context, other than to say that

it can be any effective procedure that solves the task at hand. Evoking Church’s thesis (Church,

1936), an algorithm being effective means that there should exist an accompanying Turing Machine,

which one might think of as a (correct and precise) mathematical model or simulation of the target

algorithm and its hardware. The following result connects these notions more directly with ordinary

functions:

Lemma 1. The following definitions are equivalent:

1. A is recursively enumerable (according to Definition 4).

2. A is empty or in the range of a total (computable) function f : N→ N

3. A is in the domain of a partial (computable) function f : N→ N

We leave the proof an an exercise to the reader (though we describe an example below). We will

also gloss over the meaning of a computable function, though it is worth pointing out that virtu-

ally all numerical functions encountered in ordinary mathematics (e.g., addition, multiplication,

exponentiation, integer square root, ...) are computable9.

Example Let’s take the set of square numbers considered already, i.e., A = {1, 4, 9, 16, 25, ..}. Is

this set recursively enumerable? Yes, according to the following argumentation. We know that the

following (diophantine) equation only has solution for a only when a is a square number:

a− x2 = 0,

which we can exploit to define the following (computable) function (defined for all x ∈ N):

f(x) = x2

Putting all this together, it is clear that the range of this function i.e.,

ran(f) =
{
f(1), f(2), f(3), f(4), ..

}
will only be square numbers and that A is recursively enumerable (thus satisfying condition 2).

What about condition 3? Here we can define the square root function for sqrt : N→ N (which

is a computable function). Clearly, this function is a partial function, or its domain is only a subset

of N, which is exactly the set of square numbers.

Notice that we didn’t need to mention anything about an explicit algorithm or Turing Machine

to make this case. What’s more, we did the following curious thing (which started in the last

section): we started by asking a question about an explicit set (which is often the starting point for

many computer science or logic problems), then transformed this set into an equation. We could

9More specifically, virtually all ordinary functions in math are primitive recursive functions, meaning that they

can be derived from 3 primitive computable functions (the successor function, the constant function and projection

function) coupled with three operations called (primitive) recursion, minimization and composition.
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have gone the other way, i.e., start with an equation (which is often the starting point for a number

theorist), then move from that equation to a set (then directly to an algorithm).

One alternative way of defining a recursively enumerable set, which is consistent with the

definition provided, is a set where there exists an algorithm for verifying membership among inputs

that are in the set. Generalizing from this, there is a more general class of sets that imposes stricter

conditions:

Definition 5. A recursive (or computable,decidable) set is any subset A ⊆ N for which there exist

an algorithm that can determine (full) set membership (i.e., definitively decide for any arbitrary

number x whether x ∈ A or x /∈ A).

Using the following result (as before, we leave the proof as a exercise for the reader):

Lemma 2. If a set A and its complement A are both recursively enumerable, then A is recursive.

we can demonstrate that the set of square numbers is recursive by showing that the set of non-

square numbers is recursively enumerable. Here we will sketch an algorithm for doing this, which

does the following: loops through/enumerates each i ∈ N, and print i in the case when sqrt(i)

(which is a computable function) does not return a whole number, and simply ignore the rest10.

The most important result for Hilbert’s 10th problem from computer science is that not all

recursively enumerable sets are recursive, which we examine in some detail below.

Not all recursively enumerable sets are recursive One common way to discover recursively

enumerable sets that are not recursive is by exploiting the undecidability of the Halting Problem,

which is one of the most famous theoretical results in computer science that was proved by Alan

Turing in Turing (1936). We take a brief detour to discuss this problem, then as a corollary provide

an explicit set of numbers that it recursively enumerable though not recursive.

Definition 6. In our simplified version of the Halting Problem, we will consider the following set

K that we call the Halting Set:

K =
{

(Mx, y) | program x (Mx) halts on input y ⇔Mx(y) ↓
}

which consists of all pairs of Turing machines Mx identified by the integer code x (importantly, we

will assume that we can assign numerical ids to all Turing machines M, which is a technique often

referred to as Gödelization) and inputs y such that Mx halts or terminates on input y, which we

denote using the symbol ↓ (in contrast, ↑ will either mean never halts or undefined). The Halting

Problem is therefore the problem of determining membership in K given any arbitrary Mx and y.

10Clearly this algorithm is impractical since it requires looping through an infinite number of numbers in N. When

we argue about the existence of algorithms in mathematics, we are allowed to make unrealistic, even outlandish,

assumptions about the amount of resources and time we are allowed (e.g., that we have an infinite of time/memory/-

parallel computations/..). Part of the reason why we describe abstract algorithms here in terms of Turing Machines,

as opposed to Python or Java programs, say, is that they permit such excesses (e.g., by providing a infinite memory

in the form of an infinite memory tape on which we can read and write).
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This definition seem simple enough, however it leads to difficulties centering around cases where

the indices x and inputs y match one another (i.e., the numeric id x happens to match the input

y). These give rise to diagonalization arguments of the sort first discovered by Cantor in relation

to infinity.

Theorem 2. The Halting Problem is undecidable (i.e., there exists no universal algorithm/pro-

gram/Turing machine for deciding membership in K).

Proof. Let’s imagine that K is decidable (hence making the Halting Problem decidable). Then it

is possible to define another Turing machine M ′ that does the following (since K being decidable

would allow us to compute the membership conditions on the right):

M ′(x) =

{
0 if Mx does not halt on x⇔ (Mx, x) /∈ K

↑ if Mx does halt on x ⇔ (Mx, x) ∈ K

In simpler terms, we want M ′ to terminate on programs with matching indices that do not halt:

M ′ halts on x(i.e., returns 0)⇔ program x does not halt on x

However, this leads to a contradiction when we recognize that M ′ (in virtue of being a valid Turing

Machine that we assume halts) has its own index, say e, and that it too can be run on its own

input e. This gives rise to the following:

Me halts on e⇔ [program x] does not halt on x (definition)

Me halts on e⇔ [Me] does not halt on e (substitution with e)

the last of which is a clear contradiction. Translating this into an assertion about set membership,

this amounts to saying

(Me, e) ∈ K ⇔ (Me, e) /∈ K,

which is again a contradiction, thus making our assertion that K is decidable not tenable.11

The main point here is that for any universal algorithm that tries to determine membership in

K, there will inevitably be inputs for which deciding membership will give raise to a contradiction

11If Turing machines make you feel uncomfortable, without loss of generality we can switch again to thinking

about functions where Mj in this case is a (computable) numeric function fj over a single variable (e.g., fj(y) = y2).

Following an example from Davis (1958), to conceptualize how an enumeration might be constructed (in principle,

there are many ways of enumerating such functions), imagine that each fj has an English description associated

with it (e.g., fj(y) = y2 →desc y squared), and that we order such descriptions in terms of the number of letters

in the their descriptions (in cases where descriptions have the same length, we can resolve this by ordering them

alphabetically). Using this ordering, we can then assign numeric codes accordingly.

A slightly different undecidability result can be obtained using these functions by considering a simple function

g(x) which, given an input x, adds 1 to the function indexed by x applied to x:

g(x) = fx(x) + 1.

For example, imagine that x = 3 and that f3(y) = y2, then g(3) = f3(3) + 1 = 32 + 1 = 10. Though g will be able

to be computed for most inputs (and is a in theory a computable function), the problem is that g has its own index

e. If we run it on its own input we get the following problematic case: ge(e) = ge(e) + 1, which gives raise to a

contradiction. This shows the undecidability of any algorithm that enumerates all (total) computable functions.
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that makes it impossible for any algorithm to decide whether or not it is in the set (and hence will

cause an algorithm to run forever12). We note that the Halting Set as defined is not itself a set of

numbers of the type we defined in Definitions 4-5 (i.e., a subset of N), however it can be used to

build an explicit set of numbers. The standard example is called the diagonal halting set defined

as

K0 =
{
x |Mx(x) ↓

}
, (8)

which can also be used as the basis of the proof above. We consider a different example set A

that looks superficially closer the types of sets encountered in number theory, as described in the

following corollary (which is the most important result in this section):

Corollary 1. There exists recursively enumerable sets that are not recursive.

Proof. We have already basically proven this with K, though will make the case again using a

specific example set from Poonen (2008) to emphasize the larger point. Imagining again that we

have an enumeration of Turing machines M1, M2, ..., consider the following set A ⊂ N:

A =
{
j = 2x3y |Mx(y) ↓

}
(9)

We will first establish A is recursively enumerable, which we can do by imagining the following

(completely impractical) algorithm: using our enumeration of programs, we can loop through all

numbers and pairs x, y = 1, ...,∞ and execute each Mx(y) in parallel13. In cases where Mx(y) ↓ is

true, the computation has to stop after some finite number of steps, at which point we can simply

print 2x3y (this will potentially lead to repeats, though this is fine according to our definition). We

can then simply ignore cases where the programs run forever, since these are clearly cases where

Mx(y) ↓ is not true.

In terms of this set not being recursive, clearly deciding membership in A would require solving

membership in K, which we have already shown is not possible given the undecidability of the

Halting Problem (Theorem 2). Therefore, for some inputs the program might run forever, which

we can safely ignore in this case.

12A more practically minded programmer might retort that this issue can be easily fixed by removing the cases

that give rise to this contradiction. While this might work is some practical scenarios, it misses the point, which is

that our notion of a Halting Set, which at first glance seems like a reasonable concept, is fundamentally problematics

since it gives rise to such bugs.
13As before, this algorithm is wildly impractical, though still permitted under our theoretical notion of an algorithm.

A brief anecdote related to this general theme: Yuri Matiyasevich, who ultimately solved Hilbert’s 10th problem,

was an occasional guest at my alma mater, the University of Stuttgart, and I distinctly remember the abstract for

one of his talks in 2014:

Algorithm of Alfred Tarski for deciding the validity of a closed first-order formula with variables ranging

over real numbers is one of the most difficult known decision procedures. A version of this algorithm

will be presented with all details. This version is:

• - easy to understand,

• - easy to implement on a computer,

• - extremely inefficient (emphasis mine).

I don’t recall the details of his particular algorithm, but generally when a mathematician says that an algorithm is

inefficient, it is likely to be inefficient beyond all comprehension.
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Given the relatively low bar, practically speaking, for demonstrating whether a set is recursively

enumerable (i.e., we allow algorithms that look through infinite values of numbers and use infinite

amounts of time and space), one might wonder whether there are any sets that are not recursively

enumerable. To answer this, we have the following result (which might provide additional insight).

Lemma 3. The complement of the set A from Corollary 1, A, is not recursively enumerable.

Proof. (very rough description) A being recursively enumerable (i.e., having an algorithm to enu-

merate its members) would imply that A is recursive (we could use such an algorithm for deciding

x /∈ A) and that the Halting Problem is decidable, in contradiction to what we have already

proven.

Number Theory Meets Computability

With the computer science background provided in the last section, we can now return to dio-

phantine sets and rapidly state the main results. First, the following result is the first to relate

diophantine sets and recursively enumerable sets and should be straightforward.

Theorem 3. Any diophantine set of numbers is recursively enumerable.

Proof. By definition, a set being diophantine means that we have a corresponding polynomial

p(a, x1, ..., xn). Using such a polynomial, an example (and again, highly impractical) algorithm for

listing members of the set is one that simply enumerates all n+ 1 tuples of numbers in parallel and

print a each time these numbers produce a 0 using the equation.

Now for the most surprising result called the Matiyasevich Theorem (or the Davis-Putnam-

Robinson-Matiyasevich theorem (DPRM), so-called after the overall group of researchers that laid

much of the ground work for this result):

Theorem 4. ( DPRM) Any recursively enumerable set of numbers is diophantine.

This immediately implies a negative solution to Hilbert’s 10th problem (before looking at the

proof below, spend a moment to reflect on the profoundness of this theorem!):

Corollary 2. Hilbert’s 10th problem is undecidable (i.e., no algorithm exists for solving arbitrary

arbitrary diophantine equations).

Proof. Given the DPRM theorem, every recursively enumerable set is diophantine (or has a cor-

responding equation p(a, x1, .., xn) = 0). It follows from this that the set A from Corollary 1 is

diophantine. Hence, the existence of an algorithm to solve Hilbert’s 10th problem would imply

an algorithm for determining set membership in A (or any comparable set, such as the diagonal

Halting set K0 in Equation 8), which would then imply the decidability of the Halting Problem.
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Okay, so we now have now stated the negative solution to Hilbert’s 10th problem. Of course,

really understanding how we got here involves saying a few words about the DPRM theorem, which

is the least trivial part of the entire result. Before we do this, however, let’s just consider some of

the remarkable consequences of the DPRM Theorem outside of the main result above.

Corollary 3. The set of prime numbers is diophantine14, i.e., there exists a polynomial equation

p(a, x1, ..., xn) = 0 in positive values that has a solution if and only if a is prime.

While DPRM theorem wasn’t proven until around 1970, it was conjectured to be true by Martin

Davis dating back to the 1950’s. Matiyasevich remarks that it was this corollary to the conjecture

that led many mathematicians to doubt its validity (since prime numbers are known to have quite

a random nature; the idea that they could be described in a single polynomial equation seemed far-

fetched). Subsequent work based on DPRM led to the discovery of specific polynomial equations for

primes, the most amusing of which is the following equation (which has 26 variables conveniently

matching the number of letters in the alphabet):

Theorem 5. The set of all prime numbers is equal to the set of all positive values k of the following

polynomial (Jones et al., 1976):

(k + 2){1− [wx + h + j − q]2

− [(gk + 2g + k + 1)(h + j) + h− z]2

− [2n + p + q + z − e]2

− [16(k + 1)3(k + 2)(n + 1)2 + 1− f2]2

− [e3(e + 2)(a + 1)2 + 1− o2]2

− [(a2 − 1)y2 + 1− x2]2

− [16r2y4(a2 − 1) + 1− u2]2

− [n + l + v − y]2

− [((a + u2(u2− a))2 − 1)(n + 4dy)2 + 1− (x + cu)2]2

− [(a1 − 1)l2 + 1−m2]2

− [q + y(a− p− 1) + s(2ap + 2a− p2 − 2p− 2)− x]2

− [z + pl(a− p) + t(2ap− p2 − 1)− pm]2

− [ai + k + 1− l − i]2

− [p + l(a− n− 1) + b(2an + 2a− n2 − 2n− n)−m]2}

assuming non-negative values for all variables.

This equation requires some explanation, since it clearly deviates from the standard diophantine

form we have been considering. It involves an alternative way of describing polynomial equations

that was first observed by Hilary Putnam in Putnam (1960). Given any diophantine set S ⊆ N
(represented by a polynomial p(a, x1, ..., xn) with natural number variables), such a set has a

corresponding polynomial in natural numbers q(x0, ..., xn) where

q(x0, ..., xn) = x0

(
1− p2(x0, ..., xn)

)
, (10)

14This is in virtue of the prime numbers being recursively enumerable.
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and hence the range of that polynomial includes exactly the numbers a that solve p (i.e., the factor

1− p2 must be positive, which is only possible when p evaluates to 0). Therefore, it is possible to

offer an equation in the form shown above and to express Corollary 3 in the following way:

Corollary 4. There exists some polynomial equation q(x1, ..., xn) = a which has a solution if and

only if a is a prime number.

As remarked in Poonen (2008), to prove DPRM theorem the authors essentially built a computer

out of diophantine equations; the proof ... looks curiously like the construction of a complicated

computer program, with high-level routines built out of more elementary ones, except that instead

of routines one has diophantine equations everywhere. One consequence of DPRM is that it becomes

possible to construct universal diophantine equations that can simulate Universal Turing Machines

(or other equivalent (universal) models of computation)!

Regarding the questions asked in the beginning about whether particular equations have a fixed

number of solutions (or no solutions), coming up with a universal algorithm here also turns out to

be undecidable as a consequence of DPRM (for details see Davis (1972)).

Getting to the DPRM Theorem (rough outline and history) The DRPM Theorem is a

truly remarkable result that had nonetheless been anticipated for several decades before its final

resolution (recall again Emil Post’s ominous conjecture 25 years before that Hilbert’s 10th problem

begs for an unsolvability proof ). A closely related result was obtained by Davis, Putnam and

Robinson (Davis et al., 1961) for exponential diophantine equations (i.e., diophantine equations

extended to include exponentials in combination with addition and multiplication, as permitted in

ordinary diophantine equations15).

Theorem 6. Every recursively enumerable set has an exponential Diophantine representation of

the form:

S =
{
a | ∃x1, ..., xn[pE1(a, x1, ..., xm) = pE2(a, x1, ..., xn)]

}
for exponential diophantine equations pE1 and pE2.

This immediately led to a negative solution to Hilbert’s 10th problem for exponential diophantine

equations. As Matiyasevich often cites in his lectures, this result was met with the following

criticism when related to the larger Hilbert problem, in this case by one reviewer of their article in

1962 for the Mathematical Review :

...These results are superficially related to Hilbert’s tenth Problem on (ordinary,

i.e., non-exponential) Diophantine equations. The proof the authors’ result, though very

elegant, does not use recondite facts in the theory of numbers nor in the theory of r.e.

[recursively enumerable] sets, and so it is likely that the present result is not closely

connected with Hilbert’s tenth Problem. Also, it is not altogether plausible that

all (ordinary) Diophantine problems are uniformly reducible to those in a fixed number

of variables of fixed degree, which would be the case if all r.e. sets were diophantine.

15This includes Fermat’s equation considered in Equation 2, as well as more unusual equations such as 2x3yxz+x2

=

5x2 + yz (Poonen, 2008).

13



In other words, exponential diophantine equations were not exactly what Hilbert had in mind

when he formulated the problem, hence this result did not suffice to provide a negative solution

to the original problem (At the end of this comment, you can also see the reviewers’ skepticism

about all recursively enumerable sets being diophantine). Nonetheless, Matiyasevich writes that

the significance and relevance of this result to the larger problem was overlooked by many people

beyond this single reviewer, and even included his own advisor at the time who had initiated his

interest in Hilbert’s 10th problem16.

Building on the result above, the missing link involved proving that exponentiation is diophan-

tine, or that the following set is diophantine17:{
(a, b, c) ∈ N3 | c = ab

}
by showing that it has a corresponding 3 variable diophantine equation pa(a, b, c, x1, ..., xn) = 0

(which one could use to transform any exponential diophantine equation into an ordinary dio-

phantine equation, albeit with some additional variables). Julia Robinson had earlier proved some

sufficient conditions for pa to exist, namely that it would suffice to find a particular 2 variable

diophantine equation pb(a, b, x1, ..., xn) that exhibits exponential growth. Building on recent work

by Nikolai Vorobyov, Matiyasevich uses properties of Fibonacci numbers (Fn) to prove that the

following set is diophantine: {
(a, b) | a > 0, b = F2a

}
which ultimately leads to DPRM (for full details of the proof, we again urge readers to consult

Davis (1973) and Matiyasevich (1993)).

In terms of the larger theme, here we can see more clearly the curious way in which number

theory is being studied under this approach: rather than starting an explicit diophantine equation

and trying to prove properties of that equation (as ordinarily done in number theory), we are

instead starting with a set then try to find an diophantine equation that characterizes that set. If

such an equation is found, we can then say something about its properties by deferring to what we

know about sets from computability theory.
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